5.015 First steps developing a tool to monitor city-wide air quality using Earth observations.

Early Career Scientist

Presenting Author:

KARN VOHRA, School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK , kxv745@student.bham.ac.uk

Co-Authors:

ELOISE MARAIS, School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK

PETER PORTER, Birmingham City Council, Birmingham, UK

Abstract:

Air pollution has adverse effects on human health, but is challenging to routinely and effectively monitor in cities. Satellite observations of atmospheric composition provide complete coverage of cities, but are cumbersome and challenging to use. We present first steps to develop a tool that end users can use to monitor city-scale air quality with Earth observations. We use surface observations of NO₂ for 2011-2016 from six monitoring sites in Birmingham (UK), a post-industrial city undergoing urban renewal, to validate that tropospheric column NO_2 observations from the Ozone Monitoring Instrument (OMI) accurately represent temporal changes in NO₂. Surface concentrations of monthly mean NO₂ averaged around the satellite overpass (12h00-15h00 local time) decrease by 1.5- 4.2^{-1} across the monitoring sites. Sites are spatially correlated (R > 0.55) and so are combined to obtain a representative city average decline in NO₂ of 3.1% a^{-1} (95%) confidence interval (CI): -6.2 to +1.1% a^{-1}). Monthly mean NO₂ from OMI is temporally correlated with city average surface NO₂ (R = 0.69) and gives steeper decline in NO₂ of 4.1% a^{-1} (95% CI: -8.0 to +0.6% a^{-1}) for 2011-2016. All trends are not significant due to large temporal variability and a short period of overlap. Decline in OMI NO₂ becomes very significant (p-value < 0.001) over the long OMI record (2005-2017) and is 3.4% a^{-1} (95%) CI: -4.3 to -2.5% a^{-1}), similar to the reported UK-wide decrease in NO_x emissions of 3.9% a^{-1} . In Birmingham, tropospheric column NO $_2$ equivalent to the EU standard and WHO guideline of 40 μ g m⁻³ is 6.1 x 10¹⁵ molecules cm⁻² and could be used to assess whether city-wide NO₂ concentrations exceed levels safe for human health.