4.008 Characteristics and influencing factors of PM1 over Shanghai and its impact on visibility.

Presenting Author:
Guangqiang Zhou, Shanghai Meteorological Service, Shanghai 200030, China, zhougq21@163.com

Abstract

: The relative long-term continuous in situ measurements during Jan $1^{\text {st }}, 2015$ and Dec 31 ${ }^{\text {st }}$, 2016 were employed to study the characteristics of submicron particles (PM_{1}) over Shanghai and investigate the influence of precursors and meteorological factors on PM_{1} as well as the impact of PM_{1} on visibility. A discretization method was introduced to emphasize the general regularity of PM_{1} with related factors. The results show that Shanghai has a relatively high PM_{1} level of $\sim 28 \mathrm{gmm}^{-3}$ annually and accounts for 69% of $P M_{2.5}$. PM_{1} concentration shows obvious temporal variation in year, month, week, and day. In discretized approach, PM_{1} has good linear relationship with its precursor gases and meteorological variables in most conditions. Its concentration can be highly determined by $\mathrm{SO}_{2}, \mathrm{NO}_{2}$, and $\mathrm{NO}(<34 \mathrm{ppb})$ with increasing rate of $3.37,1.17$, and 1.08 $\mu \mathrm{gm}^{-3}$ per ppb precursor, respectively. It was validated by the comparison of PM_{1} change in day of week. PM_{1} is negatively related with precipitation intensity, relative humidity ($\mathrm{RH},>35 \%$), and wind speed ($>1.5 \mathrm{~ms}^{-1}$) with rate of $-3.3,-0.27$, and $-5.9 \mu \mathrm{gm}-3$, respectively. Effect of ozone on PM_{1} is in two linear relationships inflected at $\sim 30 \mathrm{ppb}$. For other factors or situation, their relationship is not linear due to the indirect influence on transportation, formation, or accumulation. PM_{1} concentration has distinct impact on visibility and $\mathrm{PM}_{1} / \mathrm{PM}_{2.5}$ ratio is found to be a key indicator to represent the impact of particulate matter hygroscopicity on visibility. $\mathrm{PM}_{1} / \mathrm{PM}_{2.5}$ ratio has a good exponent relationship with $\left.\mathrm{RH}, P M_{1} / P M_{2.5}=0.76[(1-R H) /(1-40 \%)]\right]^{0.11}$ with determination coefficient of 0.98 . It well describes the impact of particulate matter and its hygroscopicity on visibility companying with $\mathrm{PM}_{2.5}$ concentration.

