3.148 Measurements of hydrogen peroxide and formaldehyde concentrations at ground level and in the high-altitude atmosphere over a rural site in central Japan.

Presenting Author:

Koichi Watanabe, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, Japan, nabe@pu-toyama.ac.jp

Co-Authors:

Mei Jia Jin, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, Japan

Xiao Jing Song, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, Japan

Kaede Genmoto, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, Japan

Yumeko Ichikawa, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, Japan

Saori Kakuyama, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, Japan

Chinatsu Yachi, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, Japan

Abstract:

Measurements of H₂O₂ and HCHO concentrations were performed at ground level and in the high-altitude atmosphere using a helicopter over Toyama Prefecture, Japan. The H₂O₂ and HCHO showed clear seasonal variations with highest concentrations in the summer. The H_2O_2 was well correlated with the O_3 in July and August whereas there was no correlation between O_3 and H_2O_2 in May and June. There was a negative correlation between NO_X and H₂O₂. Significantly high concentrations of H₂O₂ were observed in the summer when air pollutants were transported from the industrial regions in China. Transboundary air pollution may significantly affect harmful influence on vegetation. The concentrations of H_2O_2 and HCHO at high-altitude were analyzed by a HPLC system within 5-10 minutes after the sampling. The ${\rm H_2O_2}$ over Toyama was lowest at the surface and highest H_2O_2 was detected at the altitudes of 6,000 and 8,000 ft. On the other hand, the HCHO was highest at ground level. The concentrations of $\rm H_2O_2$ were higher than those of SO_2 at high-altitude in the summer, however the H_2O_2 was usually lower than the SO_2 ; this condition is called *oxidant limitation* during cold months. If H_2O_2 concentration rises in cold months, the acidification of cloud water may be accelerated at high elevations in central Japan where air pollution is actively transported.