3.139 The atmospheric reactivity of the NO3 radical.

Early Career Scientist

Presenting Author:

Jonathan M. Llebmann, Atmospheric Chemistry Department, Max Planck Institut für Chemie, 55128, Mainz, Germany, jonathan.liebmann@mpic.de

Co-Authors:

Einar Karu, Atmospheric Chemistry Department, Max Planck Institut für Chemie, 55128, Mainz, Germany

Nicolas Sobanski, Atmospheric Chemistry Department, Max Planck Institut für Chemie, 55128, Mainz, Germany

Jan Schuladen, Atmospheric Chemistry Department, Max Planck Institut für Chemie, 55128, Mainz, Germany

Gerhard Schuster, Atmospheric Chemistry Department, Max Planck Institut für Chemie, 55128, Mainz, Germany

Anja Claude, Meteorologisches Observatorium Hohenpeissenberg, Deutscher Wetterdienst, 82383, Hohenpeissenberg, Germany

Jennifer B.A. Muller, Meteorologisches Observatorium Hohenpeissenberg, Deutscher Wetterdienst, 82383, Hohenpeissenberg, Germany

Dagmar Kubistin, Meteorologisches Observatorium Hohenpeissenberg, Deutscher Wetterdienst, 82383, Hohenpeissenberg, Germany

Robert Holla, Meteorologisches Observatorium Hohenpeissenberg, Deutscher Wetterdienst, 82383, Hohenpeissenberg, Germany

Heidi Hellen, Finnish Meteorological Institute, 00560, Helsinki, Finland **Hannele Hakola**, Finnish Meteorological Institute, 00560, Helsinki, Finland **Lauriane Quéléver**, Department of Physics, University of Helsinki, 00140, Helsinki, Finland

Simon Schallhardt, Department of Physics, University of Helsinki, 00140, Helsinki, Finland

Mikael Ehn, Department of Physics, University of Helsinki, 00140, Helsinki, Finland

Christian Plaß-Dülmer, Meteorologisches Observatorium Hohenpeissenberg, Deutscher Wetterdienst, 82383, Hohenpeissenberg, Germany

Horst Fischer, Atmospheric Chemistry Department, Max Planck Institut für Chemie, 55128, Mainz, Germany

Thorsten Hoffmann, Johannes Gutenberg University, 55128, Mainz, Germany **Jonathan Williams**, Atmospheric Chemistry Department, Max Planck Institut für Chemie, 55128, Mainz, Germany

Jos Lelieveld, Atmospheric Chemistry Department, Max Planck Institut für Chemie, 55128, Mainz, Germany

John Crowley, Atmospheric Chemistry Department, Max Planck Institut für Chemie, 55128, Mainz, Germany

Abstract:

We describe the first direct measurements of the total reactivity of NO₃ in ambient air, in which cavity-ring-down spectroscopy is used to monitor the loss synthetically generated NO₃ after reacting with ambient trace-gases in a flow-tube. The instrument can measure NO₃ loss rate constants between 0.005 s⁻¹ and 45 s⁻¹ with an uncertainty of 16 % in the center of its dynamic range.

Results from the deployment of this instrument in a boreal forest in southern Finland and a rural mountain site in southern Germany are presented. In both cases, NO_3 reactivity was driven by local meteorology coupled with biogenic emissions and displayed a strong vertical gradient with the highest reactivity measured below canopy level in the boreal forest. Very low NO_3 reactivities were observed in the residual layer. Comparison of the measured NO_3 reactivity with measurements of Volatile Organic Compounds (VOCs) indicated that the reactivity is dominated by reaction with monoterpenes, though a significant fraction of reactivity remained unattributed. During daytime, at both sites, more than 25% of the NO_3 formed was removed via reaction with biogenic volatile organic compounds (BVOCs), implying a significant daytime loss of NOx and formation of organic nitrates and secondary organic aerosol via NO_3 chemistry even though the nitrate radical is generally considered to be of importance at night.