3.114 Temporal variations of the atmospheric CO2 mole fraction, isotopic ratios of CO2 and $\delta(O2/N2)$ observed at Ny-Ålesund, Svalbard.

Presenting Author:

Daisuke Goto, National Institute of Polar Research, goto.daisuke@nipr.ac.jp

Co-Authors:

Shinji Morimoto, Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University

Shuji Aoki, Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University

Shigeyuki Ishidoya, National Institute of Advanced Industrial Science and Technology

Shuichiro Takebayashi, Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University

Chinatsu Yamada, Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University

Takakiyo Nakazawa, Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University

Abstract:

To elucidate contributions of the terrestrial biosphere and the ocean to the CO₂ cycle on the earth's surface, we have maintained systematic observations of CO₂ mole fraction, the isotopic ratios (δ^{13} C and δ^{18} O) of CO₂ and oxygen to nitrogen ratio (δ (O₂/N₂)) in the atmosphere at Ny-Ålesund, Svalbard since 1991, 1996 and 2001, respectively. The CO₂ mole fraction shows a clear seasonal cycle superimposed on a secular increase with an average rate of 2.0 ppm yr⁻¹ for the period 1996–2013. On the other hand, δ^{13} C and δ (O $_{2}/N_{2}$) decrease secularly at an average rate of $-0.020 \text{ }\% \text{ yr}^{-1}$ for 1996-2013, and -19.9 per meg yr⁻¹ for 2001–2013, respectively. Based on the observed secular trends of the CO $_2$ mole fraction and $\delta(O_2/N_2),$ the average CO $_2$ uptake during 2001–2013 was estimated to be 1.6 \pm 0.8 and 2.3 \pm 0.5 GtC yr⁻¹ for the terrestrial biosphere and the ocean, respectively. By using the observed CO $_2$ and δ^{13} C, the corresponding CO $_2$ uptake of 1.3 \pm 0.6 and 2.6 \pm 0.5 GtC yr⁻¹ were obtained for the same period. The estimates from the two methods are in good agreement with each other. The terrestrial biospheric CO₂ uptake derived by the latter method showed large inter-annual variability in association with El Niño events. On the other hand, the oceanic uptake increased secularly with less inter-annual variability during 1996-2013. In this presentation, temporal variations of the CO₂ mole fraction, δ^{13} C, δ^{18} O and $\delta(O_2/N_2)$ observed at Ny-Ålesund up to 2017 will also be presented.