3.095 Philippines TCCON Project: one-year measurement results and future.

Presenting Author:

Isamu Morino, National Institute for Environmental Studies, Satellite Observation Center, Tsukuba, Ibaraki, Japan, morino@nies.go.jp

Co-Authors:

Voltaire A. Velazco, University of Wollongong, Centre for Atmospheric Chemistry, Wollongong, NSW, Australia; Oscar M. Lopez Center for Climate Change Adaptation and Disaster Risk Management Foundation, Inc., Manila, Philippines

Akihiro Hori, National Institute for Environmental Studies, Satellite Observation Center, Tsukuba, Ibaraki, Japan

Osamu Uchino, National Institute for Environmental Studies, Satellite Observation Center, Tsukuba, Ibaraki, Japan

Hirofumi Ohyama, National Institute for Environmental Studies, Satellite Observation Center, Tsukuba, Ibaraki, Japan

Tetsu Sakai, Meteorological Research Institute, Tsukuba, Ibaraki, Japan **Toshiharu Izumi**, Meteorological Research Institute, Tsukuba, Ibaraki, Japan **Tomohiro Nagai**, Meteorological Research Institute, Tsukuba, Ibaraki, Japan **Gerry Bagtasa**, University of the Philippines, Diliman Quezon City, Philippines **Yukio Yoshida**, National Institute for Environmental Studies (NIES), Satellite Observation Center, Tsukuba, Ibaraki, Japan

Matthäus Kiel, California Institute of Technology, Pasadena, California, USA **Beata Bukosa**, University of Wollongong, Centre for Atmospheric Chemistry, Wollongong, NSW, Australia

Nicholas M. Deutscher, University of Wollongong, Centre for Atmospheric Chemistry, Wollongong, NSW, Australia

Jenny A. Fisher, University of Wollongong, Centre for Atmospheric Chemistry, Wollongong, NSW, Australia

David W. T. Griffith, University of Wollongong, Centre for Atmospheric Chemistry, Wollongong, NSW, Australia

Abstract:

TCCON is dedicated to the precise measurements of the total column averages of greenhouse gases (GHGs) such as $\rm CO_2$ and $\rm CH_4$. TCCON measurements have been and are currently used extensively and globally for satellite validation, for comparison with atmospheric chemistry models and to study atmosphere-biosphere exchanges of carbon. With the global effort to cap GHG emissions, TCCON has taken on a vital role in validating satellite-based GHG data from past, current and future missions like Japanese GOSAT and GOSAT-2, NASA's OCO-2 and OCO-3, Chinese TanSat, TROPOMI, and others. The lack of reliable validation data for the satellite-based GHG observing missions in the tropical

regions is a common limitation in global carbon-cycle modeling studies that have a tropical component. The international ${\rm CO}_2$ modeling community has specified a requirement for "expansion of the ${\rm CO}_2$ observation network within the tropics" to reduce uncertainties in regional estimates of ${\rm CO}_2$ sources and sinks using atmospheric transport models.

To address this challenge, we installed a newly-constructed TCCON FTS at a wind farm operated by the Energy Development Corporation in Burgos, Ilocos Norte, Philippines (18.5326° N, 120.6496° E), which followed rigorous site assessments and discussions at several TCCON and GOSAT-2 science team meetings. After installation and setup of the instruments in Mar. 2017, we started operations in the Philippines using TCCON protocols. Here, we will show results of one-year of measurements, some interesting phenomena such as CO and CH_4 enhancements, comparisons with GOSAT and OCO-2 soundings, and participation in aircraft observation campaigns such as EMeRGe-Asia and NASA CAMP 2 Ex.