3.068 Measurements of carbon and hydrogen isotope ratios of atmospheric methane in the northern North Pacific and the Arctic Ocean and interpretation of Arctic methane sources.

Early Career Scientist

Presenting Author: **FUJITA RYO**, Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University, Sendai, Japan, ryo.fujita.e2@tohoku.ac.jp

Co-Authors: **Morimoto Shinji**, Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University, Sendai, Japan

Ishidoya Shigeyuki, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan

Tohjima Yasunori, National Institute for Environmental Studies, Tsukuba, Japan

Ishijima Kentaro, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Aoki Shuji, Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University, Sendai, Japan

Nakazawa Takakiyo, Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University, Sendai, Japan

Abstract:

There are large and important natural CH$_4$ sources in northern high latitudes, but their emissions and spatial distribution are not well understood yet. Simultaneous measurements of carbon and hydrogen isotope ratios (δ^{13}C and δ^D) of atmospheric CH$_4$ would help us to separate contributions from different types of sources (e.g., biogenic or thermogenic) to atmospheric CH$_4$; however, the isotope data are still sparse, especially in boreal North America and Siberia. In this study, we measured atmospheric CH$_4$, δ^{13}C, and δ^D on board the research vessel MIRAI in the northern North Pacific and the Arctic Ocean in summer to autumn in 2012–2016. We also estimated the representative CH$_4$ isotope source signatures in their surrounding areas. A clear latitudinal gradient is observed for atmospheric CH$_4$, δ^{13}C, and δ^D from 36°N to 76°N; northward increase of CH$_4$ and decrease of δ^{13}C and δ^D are evident. This suggests that biogenic CH$_4$ sources are dominant in northern high latitudes in the summertime. By applying a single mixing equation to the data observed at latitudes higher than 55°N, the average isotope signatures over 2012–2016 are estimated to be -65.6 ± 1.6‰ for δ^{13}C and -361 ± 45‰ for δ^D. The results are similar to the values reported previously for boreal wetland CH$_4$ sources. A five-day backward trajectory analysis shows that air parcels with high CH$_4$ come mainly from land areas of Alaska and Northern Canada and partially from Siberia. CH$_4$ emissions from surface water in the Arctic Ocean would not be prominent in summer to autumn in 2012–2016.