3.025 Methane emission from the stems of Alnus japonica in riparian wetlands within a temperate forest catchment.

Presenting Author:

Kenshi Takahashi, Kyoto University, Research Institute for Sustainable Humanosphere, Uji, Kyoto, Japan, tkenshi@rish.kyoto-u.ac.jp

Co-Authors:

Ayaka Sakabe, Osaka Prefecture University, Graduate School of Environmental Sciences, Sakai, Osaka, Japan

Masayuki Itoh, Public University Corporation of the University of Hyogo, Graduate School of Human Science and Environment, Hyogo, Japan

Wakana Azuma, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan

Mioko Ataka, Forestry and Forest Products Research Institute, Kansai Research Center, Fushimi-ku, Kyoto, Japan

Makiko Tateishi, Arid Land Research Center, Tottori University, Tottori, Japan **Yoshiko Kosugi**, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan

Abstract:

Methane (CH_{d}) is a strong greenhouse gas with more than 20 times the global warming potential compared to carbon dioxide. Understanding the sources and emissions of CH_{Λ} is crucially important for climate change predictions; however, there are significant discrepancies between CH₄ source estimates derived via so-called bottom-up and topdown methods. Anoxic wetland ecosystems are considered to be the largest contributor to natural CH_{Δ} emissions, accounting for more than 20% of the global CH_{Δ} source. Recently, wetland-adapted trees have attracted a considerable attention because of its potential significance as a new emission source of atmospheric CH_A , in which CH_A produced by methanogens in soil are believed to be transported upward inside the stem and diffused to the atmosphere through woody stem surfaces, yet the magnitude and controls of tree-mediated emission processes remain unknown. In our study, we have conducted measurements of CH_4 emission rates from the stem surfaces of Alnus japonica (Alnus japonica (Thunb.) Steud.) in riparian wetlands within a temperate forest catchment. A near-infrared laser spectroscopy instrument and closed chamber systems enables us in-situ continuous measurements of CH₄ emission rates, revealing that meteorological conditions and soil environment are associated with the spatio-temporal variations in the CH_4 emission rates.