2.154 Measurements of HO2 uptake coefficient on mineral dust particles using aerosol flow tube with PERCA and LIF system.

Early Career Scientist

Presenting Author:

Qi Zou, State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China, qizou2014@pku.edu.cn

Co-Authors:

Keding Lu, State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China

Mingjin Tang, Guangzhou institute of geochemistry, China Academy of Sciences, Guangzhou, China

Huan Song, State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China

Abstract:

Field measurement studies imply that HO₂ uptake on aerosol is one of the most important sinks for HO₂ radicals. The uptake coefficient of HO₂ could significantly affect the budget of OH radicals and ozone regionally. However, the measurement results of HO 2 uptake coefficient on different aerosol are limited, while some have large discrepancies. Laboratory studies were carried out to investigate the heterogeneous reaction of HO₂ radical on TiO₂ and other mineral dust particles using aerosol flow tube (AFT). HO_2 concentrations were measured at room temperature using both peroxy radical chemical amplification (PERCA) system and the Laser-Induced-Fluorescence (LIF) system. For the PERCA system, HO₂ radicals were converted to NO₂, which was measured by a commercial instrument cavity attenuated phase shift (CAPS, Ecotech), in an amplified reactor using a chain reaction involving CO and NO. The amplification factor of HO₂, called chain length (CL), was calibrated at different relative humidity. The detection limit of NO₂ is 0.15 ppbv for an averaging time of 30s. The measurement was conducted under relatively high HO₂ concentration ([HO₂] = 10^9 to 10^{10} molecule cm⁻³). For the LIF system, atmospherically relevant HO₂ concentration was produced ([HO₂] = 10^8 to 10 ⁹ molecule cm⁻³). The detection limit of HO_2 for LIF system is 10⁷ molecule cm⁻³. The measurements of HO₂ uptake coefficient were conducted at relative humidity from 5% to 40% with a time resolution of 30s.