2.133 Reduced nitrogen species as observed in urban and rural areas in the North China Plain.

Presenting Author:
Xiaobin Xu, Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, China, xiaobin_xu@189.cn

Co-Authors:
Ying Wang, Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, China
Weili Lin, College of Life and Environment Sciences, Minzu University of China, Beijing 100081, China
Gen Zhang, Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, China
Li Zhou, Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, China
Rui Wang, Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, China
Wanyun Xu, Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, China

Abstract:

Numerous trace gases exist in the atmosphere, some of which are nitrogen-containing species. Oxides of nitrogen (such as NO\textsubscript{x}, HONO, etc.) play vital roles in atmospheric chemistry and have been extensively studied. However, less attention has been paid to reduced nitrogen species with the exception of NH\textsubscript{3}, which plays an important role in the formation of secondary aerosols and the acidification of ecosystems. So far, observational studies of reduced nitrogen species other than NH\textsubscript{3} have been extremely lacking, limiting our understanding of their roles in the atmosphere. Here we show observational results of ambient NH\textsubscript{3} and other nitrogen-containing gases from an urban site and a rural site in the North China Plain. Ambient NH\textsubscript{3} was observed at China Meteorological Administration (CMA) in Beijing from 1 December 2015 to 31 January 2016 and at Raoyang (RY) in central Hebei province from 19 June to 26 July 2016 using an off-axis integrated cavity output spectroscopy (ICOS) analyzer and a chemiluminescence analyzer, respectively. Other nitrogen-containing gases at both sites were observed using an IONICON proton transfer time of flight mass spectrometer (PTR-TOFMS). About fifty nitrogen-containing species showed average levels above the detection limit (10 ppt). The top eight reduced nitrogen species at both sites were NH\textsubscript{3}, H\textsubscript{4}N\textsubscript{2}, CH\textsubscript{3}N, CH\textsubscript{3}NH\textsubscript{2}, CH\textsubscript{3}NHNH\textsubscript{2}, H\textsubscript{2}N\textsubscript{2}, HCN,
and CH$_3$CN, with average mixing ratios ranging from 0.45 to 52.6 ppb. Other nitrogen species with average levels over 0.10 ppb were HCCCN, C$_2$H$_6$N$_2$O$_2$, C$_4$H$_7$N$_2$O, C$_5$H$_5$N, and C$_5$H$_{10}$N$_2$. Although NH$_3$ was the most abundant nitrogen species, the sums of other reduced nitrogen species at CMA and RY were about 2.5 and 0.4 folds of the NH$_3$ levels, respectively. At both sites H$_4$N$_2$ was found to be the most non-NH$_3$ reduced nitrogen species, with average levels about 10 ppb.