2.109 Viscosities of secondary organic aerosols derived from benzene, p-xylene, and diesel fuel: Measurements and predictions.

Presenting Author:

Mijung Song, Department of Earth and Environmental Sciences, Chonbuk National University, Jeollabuk-do, Republic of Korea, mijung.song@jbnu.ac.kr

Co-Authors:

Mallory L. Hinks, Department of Chemistry, University of California Irvine, Irvine, CA 92697

Sandra L. Blair, Department of Chemistry, University of California Irvine, Irvine, CA 92697

Lisa M. Wingen, Department of Chemistry, University of California Irvine, Irvine, CA 92697

Adrian Maclean, Department of Chemistry, University of British Columbia, Vancouver, BC

Julia Laskin, Department of Chemistry, Purdue University, USA

Alexander Laskin, Department of Chemistry, Purdue University, USA

Ljiljana Paša-Tolic, Department of Chemistry, Purdue University, USA

Jared B. Shaw, Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA

Wing-Sy W. DeRieux, Department of Chemistry, University of California Irvine, Irvine, CA 92697

Ying Li, Department of Chemistry, University of California Irvine, Irvine, CA 92697

Gwanggon Jo, Department of Earth and Environmental Sciences, Chonbuk National University, Jeollabuk-do, Republic of Korea

Manabu Shiraiwa, Department of Chemistry, University of California Irvine, Irvine, CA 92697

Sergey A. Nizkorodov, Department of Chemistry, University of California Irvine, Irvine, CA 92697

Allan K. Bertram, Department of Chemistry, University of British Columbia, Vancouver, BC

Abstract:

In spite of importance for particle size distributions, mass concentrations, and chemical reactions, the viscosity of secondary organic aerosols (SOA) remain uncertain. In this study, we measured viscosities at 294 \pm 1 K of SOA particles produced by photo-oxidation of benzene, *p*-xylene, and diesel fuel for relative humidities ≤ -50 % using a poke-flow technique combined with fluid simulations. Viscosity of benzene, xylene, and diesel SOA were also predicted based on the glass transition temperatures of SOA

compounds and compared with the measured viscosities. The results and atmospheric implication will be presented.