2.107 Heterogeneous uptake of N2O5 in urban and sand dust plumes observed in spring in Beijing, China: implications for parameterizations and particulate nitrate formation.

Early Career Scientist

Presenting Author:

Men XIA, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China, <u>16900985r@connect.polyu.hk</u>

Co-Authors:

Tao Wang, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China

Yutong Liang, University of California, Berkeley, Berkeley, CA, USA

Yuechong Zhang, Chinese Research Academy of Environmental Sciences, Beijing, China

Xi Cheng, Chinese Research Academy of Environmental Sciences, Beijing, China **Weihao Wang**, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China

Zhe Wang, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China

Jian Gao, Chinese Research Academy of Environmental Sciences, Beijing, China **Hong Li**, Chinese Research Academy of Environmental Sciences, Beijing, China **Yizhen Chen**, Chinese Research Academy of Environmental Sciences, Beijing, China

Abstract:

Dinitrogen pentoxide (N_2O_5) and its heterogeneous product on aerosol, nitryl chloride (CINO₂), contribute to nocturnal nitrate formation and impact daytime oxidative capacity. However, ambient observations of N2O5 and CINO2 are still limited, which precludes full understanding of reactive nitrogen chemistry in various conditions. Here we present observations of N_2O_5 and CINO₂ at a ground site in Beijing in 2017, focusing on the intercepted urban and sand dust plumes with abundant N2O5 and/or CINO2. High levels of N₂O₅ (up to 2.2 ppbv) were observed on May 1st night due to insignificant heterogeneous loss. In comparison, CINO₂ mixing ratios of up to 3.3 ppbv were frequently observed in late May in humid and chemically processed urban plumes. Significant levels of CINO₂ (up to 0.7ppbv) characterized with very fast heterogeneous loss of N_2O_5 (k(N_2O ₅) up to $0.02s^{-1}$) were observed in a sand storm event. N₂O₅ uptake coefficient (γ) is calculated for various air masses and found more variable than that suggested by parameterizations. The observed γ is mostly linked to the ratio of aerosol volume to surface area density (V_a/S_a) but less dependent on $[H_2O]$ or water-soluble ions. Utilizing the derived uptake coefficient (γ =0.027±0.010) along with related data, nocturnal nitrate production rates are calculated and found correlated to observed nitrate increasing rates. In the CINO₂-rich urban plumes, heterogeneous uptake of N_2O_5 results in comparable or

higher nitrate formation potential than daytime OH+NO₂ reaction. Higher NO₃ production coupled with larger proportion of N₂O₅ lost in heterogeneous uptake is responsible for more significant nocturnal nitrate production. Overall, our results indicate notable nighttime chemistry of N₂O₅ in spring time of urban Beijing and its significant contribution to particulate nitrate formation.