2.105 Composition, Source Apportionment and Health Risk Assessment of PM2.5 in Kuala Lumpur City Centre in 2015-2016.

Presenting Author:

Mohd Talib Latif, School of Environmental and Natural Resource Sciences, Faculty of Science and Technology,Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia, talib@ukm.my

Co-Authors:

Nor Azura Sulong, School of Environmental and Natural Resource Sciences, Faculty of Science and Technology,Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Md Firoz Khan, Centre for Tropical Climate Change System (IKLIM), Institute for Climate Change, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Mohd Faiz Fadzil, Environmental Research Group, School of Marine Science and Environment, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia

Tahir Norhayati Mohd, Environmental Research Group, School of Marine Science and Environment, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia

Noorlin Mohamad, Environmental Research Group, School of Marine Science and Environment, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia

Mazrura Sahani, Centre for Health and Applied Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia

Yusuke Fujii, Centre for Environmental Sciences in Saitama, Saitama 347-0115, Japan

Susumu Tohno, Department of Socio-Environmental Energy Science, Graduate School of Energy Science, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

Abstract:

This study aims to determine the composition and health risk assessment of $PM_{2.5}$ collected during seasonal cycles including haze episode in the Kuala Lumpur city centre. The samples were collected on quartz microfiber filter using a high volume air sampler (HVS) with the flow rate of $1.13 \text{ m}^3 \text{ min}^{-1}$ on a 24 h basis. The sampling campaign was conducted for a year, starting from June 2015 to May 2016. The composition of $PM_{2.5}$ determined were water soluble ionic ions (WSII), trace metals, biomass tracers, black carbon and polycyclic aromatic hydrocarbons (PAHs). The possible sources of $PM_{2.5}$ were apportioned using Positive Matrix Factorisation (PMF). The health risk was assessed according to United States Environmental Protection Agency (USEPA) methodology. The results showed that the annual $PM_{2.5}$ concentrations was $30\pm 26 \ \mu g \ m^{-3}$. About 38%,

19% and 7% of the daily samples exceeded the World Health Organization Guideline, USEPA Air Quality Standards and Malaysia Ambient Air Quality Standard (Interim I-2015), respectively. During haze episode, the $PM_{2.5}$ concentration measured was 72.3±37.8 µg m⁻³. From the inorganic compositions of $PM_{2.5}$, five factors were identified where the main source comes from mixed secondary inorganic aerosols (SIA) and biomass burning (37.9%). The source apportionment of the organic $PM_{2.5}$ revealed that the main source was released from gasoline emission (29.1%). The excess lifetime cancer risk (ELCR) and hazard index (HI) for trace metals inhalation exposure was the highest among the adult group (4.56 E-05) and infant group (HI = 2.128), respectively. The incremental lifetime carcinogenic risk (ILCR) for PAHs inhalation exposure was the highest among the adult group (1.42 E-07). Overall, this study revealed that more attention should be given to sensitive groups as they develop higher health risk than others.