2.078 Molecular Insights into NO-Promoted Sulfate Formation on Model TiO2 Mineral Dust with Different Exposed Facets.

Early Career Scientist

Presenting Author:

Weiwei Yang, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, Hubei, China., yangww11@hotmail.com

Co-Authors:

Min Chen, State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China

Wen Xiao, Department of Materials Science and Engineering National University of Singapore Singapore, Singapore.

Yanbing Guo, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, Hubei, China.

Abstract:

Industry exhaust (such as that from coal-fired plants)-initiated, sulfate aerosol formation on man-made mineral dust has not received a great deal of attention despite having a possible impact on the local environment. Titanium dioxide (TiO_2) nanoparticle is one of the most widely used materials in the purification of industrial exhaust. Nowadays, there is a lot of efforts, such as through morphology control, have been made to improve the performance of TiO_2 in the application, thus leading to unanticipated release of nano TiO_2 inside the operational areas or outsides the nearby atmosphere.

In this study, we choose the most available engineered TiO₂ nanomaterials with preferentially exposed (001), (010) and (101) facet as model oxides, to explore the possible reaction process and mechanism when they encounter NO and SO₂ under typical working conditions. DRIFTS spectra coupled with DFT calculations were used to investigate the dynamic adsorption behaviors of NO or/and SO2 on the three facets while ion chromatography was adopted to quantify the surface products. Within the operational window of 100-400^oC insides the coal-fired plants, an obvious promotion effect of NO on the formation of sulfate species was found on all the faceted samples. Active oxygen species present in those low-coordinated surfaces play a determinant role in the promotion process, which enabled the oxidation of NO into NO₂. Then the adsorbed nitrate species resulting from the disproportionation of NO_2 dimer (N_2O_4) or gaseous NO_2 oxidize adsorbed sulfite into sulfate species. The T101, as the most stable facet existing in nano anatase TiO_2 dust with over 90% fraction, obtained the highest normalized amount of sulfate in the presence of NO. The occurrence of NO-promoted formation of sulfate under simulated atmospheric conditions (30⁰C, 5 ppmv SO₂ and 10 ppmv NO) indicate that this promotion effect can be ubiquitous on well-engineered anthropogenic dusts.