2.046 New insight into the role of H2SO4 seeds in SOA formation from toluene and isoprene.

Presenting Author:

Yongfu XU, State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China, xyf@mail.iap.ac.cn

Co-Authors:

Long Jia, State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Abstract:

In general, it is difficult to generate SOA through homogenous mechanisms. Preexisting seeds play a vital role in SOA formation. Chamber experiments have been used to demonstrate how background H₂SO₄ seeds affect SOA formation in toluene-NO₂ and isoprene-NO₂ irradiations. H_2SO_4 is generally formed from the gas-phase oxidation of SO₂ by OH. In toluene-NO₂ irradiations, the burst time of particles was delayed by 3 (2) hours in ultra-pure background air in which SO₂ concentrations were well below the SO₂ analyzer detection limit of 50 ppt as compared to that in background air in which SO₂ concentrations were around 1 ppb under dry (humid) conditions. The maximum number concentrations of particles were only 10²/cm³ in ultra-pure background air, compared to 10^4 /cm³ in background air. In addition, the maximum mass concentrations of SOA in ultra-pure background air were only about 8 μ g/m³ under both dry and humid conditions after 6 hours of reaction, compared to the concentrations of about 75 μ g/m³ (dry) and 165 μ g/m³ (humid) in background air. In isoprene-NO₂ irradiations, both OH and O₃ are important oxidants. In isoprene-OH irradiations, background SO₂ had a great positive effect on SOA formation, which is similar to toluene-NO₂ irradiations. However, in the ozonolysis of isoprene particles were mainly formed by self-nucleation of organic products. It is concluded that background H_2SO_4 particles are the major seeds in the OH oxidation channel of toluene and isoprene, which enhance SOA formation through the acid-catalyzed particle-phase reactions, while theyhave little effect on the O₃ channel oxidation of isoprene due to self-nucleation of the stabilized Criegee intermediatesrelated products.