2.001 Photochemical formation of C1-C5 alkyl nitrates in suburban Hong Kong and over South China Sea.

Early Career Scientist

Presenting Author:

Lewei ZENG, Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China, iriszeng993@gmail.com

Co-Authors:

Xiaopu Lyu, Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
Hai Guo, Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
Shichun Zou, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China

Zhenhao Ling, School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China

Abstract:

Alkyl nitrates (RONO₂) are important reservoirs of atmospheric nitrogen, regulating nitrogen cycling and ozone (O_3) formation. In this study, we found that propane and nbutane were significantly (p<0.05) lower at the offshore site (WSI) in Hong Kong, where C $_3$ -C₄ RONO₂ were comparable (p>0.05) to the suburban site (TC). Stronger oxidative capacity at WSI led to more efficient RONO2 formation. Relative incremental reactivity (RIR) was for the first time used to evaluate RONO2-precursors relationships. In contrast to consistently volatile organic compounds (VOCs)-limited regime at TC, RONO2 formation at WSI switched from VOCs-limited regime during O₃ episodes to VOCs and nitrogen oxides (NO_x) co-limited regime during non-episodes. Furthermore, unlike the predominant contributions of parent hydrocarbons to C₄-C₅ RONO₂, the productions of C₁ -C3 RONO2 were more sensitive to other VOCs like aromatics and carbonyls, which accounted for ~40-90% of the productions of C_1 - C_3 alkylperoxy (RO₂) and alkoxy radicals (RO) at both sites. This resulted from the decomposition of larger RO_2/RO and the change of OH abundance under the photochemistry of other VOCs. This study advanced our understandings on the photochemical formation of RONO₂, particularly the relationships between RONO2 and their precursors which were not confined to the parent hydrocarbons.