1.220 Characterization of a Thermal Denuder for the Estimation of Volatility Parameters of Laboratory Generated Aerosols.

Early Career Scientist

Presenting Author:

Zaeem Babar, Department of Environmental Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea, zaeembabarhashmi@gmail.com

Co-Authors:

Jun-Hyun Park , Mass Spectrometry Research Center, Korea Basic Science Institute, Ochang 363-883, Republic of Korea

Ho-Jin Lim, Department of Environmental Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea

Fawad Ashraf, Department of Environmental Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea Department of Chemical Engineering, COMSATS Institute of Information Technology, Defence Road, Off Raiwind Road, Lahore 54000, Pakistan

Abstract:

In this study, a new KNU thermal denuder was developed and characterized in detail. The temperature profile was uniform with relatively higher exit temperatures as compared to previous studies. Temperature ramping rate was $\sim 14.3^{\circ}$ C min⁻¹ for a set value in the range of 25⁰C-250⁰C. Particle losses in thermal denuder were due to diffusional and thermophoretic losses at room and higher temperatures, respectively. Furthermore, integrated volume method was used to determine saturation pressure (P_{sat}^0) at 25°C and enthalpy of vaporization (ΔH_{y}) of organic aerosols (single component and binary mixtures) using volatiliy profile data generated by coupling thermal denuder and scanning mobility particle sizer. For cis-pinonic acid, (1S)-(+)-ketopinic acid, (1R)-(+)nopinone, phthalic acid, catechol, benzoic acid, and o-cresol determined ΔH_v and P^0_{sat} were 81.5 kJ mol⁻¹, 41.2 kJ mol⁻¹, 36.4 kJ mol⁻¹, 45.1 kJ mol⁻¹, 58.8 kJ mol⁻¹, 75.2 kJ mol⁻¹ , and 39.8 kJ mol $^{-1}$ and 0.24 x 10 $^{-5}$ Pa, 0.65 x 10 $^{-5}$ Pa, 1.67 x 10 $^{-5}$ Pa, 1.15 x 10 $^{-4}$ Pa, 6.55 Pa, 0.18 Pa, and 12.47 Pa, respectively. For the case of binary mixtures of benzoic acid and o-cresol, catechol and phthalic acid, cis-pinonic acid and nopinone, and ketopinic acid and nopinone, the values of $P^{0}_{sat,1}$ and $\Delta H_{v,1}$ and $P^{0}_{sat,2}$ and $\Delta H_{v,2}$ for high and low volatile components were estimated using two product model and were within 10% to 38% of single component values. In addition, estimated ΔH_v and P_{sat}^0 using Thermal Denuder were also compared with those determined using Thermogravemetric Analysis.