1.142 Trends in primary NO2 emissions and investigation into vehicle cold start effects from ambient monitoring data in the UK.

Early Career Scientist

Presenting Author:

VASILIS MATTHAIOS, SCHOOL OF GEOGRAPHY EARTH AND ENVIRONMENTAL SCIENCE, UNIVERSITY OF BIRMINGHAM, UK, vxm668@bham.ac.uk

Co-Authors:

Louisa Kramer, SCHOOL OF GEOGRAPHY EARTH AND ENVIRONMENTAL SCIENCE, UNIVERSITY OF BIRMINGHAM, UK

Francis Pope, SCHOOL OF GEOGRAPHY EARTH AND ENVIRONMENTAL SCIENCE, UNIVERSITY OF BIRMINGHAM, UK

William Bloss, SCHOOL OF GEOGRAPHY EARTH AND ENVIRONMENTAL SCIENCE, UNIVERSITY OF BIRMINGHAM, UK

Abstract:

Nitrogen oxides (NO and NO₂) are key air pollutants and atmospheric chemical intermediates; exceedance of air quality limits for NO₂ is a significant policy challenge in many urban environments globally. Here, we investigate trends in measured ambient NO2 and NO_X mixing ratios from urban (road traffic dominated) monitoring sites in the UK over the period 2009-2016. We apply an oxidant analysis approach to the ambient data to determine trends in primary NO_2 emissions, and introduce a methodology to examine evidence for enhanced vehicle "cold start" primary NO2 emissions. Analysis of the trends indicates an overall reduction of 18 % (from 0.17 to 0.14) in the monthly mean primary NO₂ emission fraction in the UK from 2009 to 2016, with a significant median decrease of -0.32 per year. However, during cold weather (temperatures of 5 ^OC or below) overall NO_2 primary emissions are elevated from 6.2 (±0.4) % to 10.2 (±0.1) %, and from 5.6 (±0.4) % to 9.8 (±0.1) % for morning and evening rush hours respectively. For individual locations, cold weather primary emissions can be factors of 1.6 - 3.8 higher. Trends in ambient NO_x and NO_2 and in the primary NO_2 emission in general indicate that there is an improvement in urban air quality over the last decade. However, the cold weather results may indicate that the combination of recent vehicle driving history and ambient weather conditions, in conjunction with technological constraints on the operating temperature range of emission control systems in some vehicles, have a substantial impact upon NO_2/NO_x emissions and hence upon UK urban air quality.