1.137 Unexpected slowdown of US pollutant emission reduction in the past decade.

Presenting Author:

Zhe Jiang, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, China, zhejiang@ustc.edu.cn

Co-Authors:

Brian McDonald, NOAA Earth System Research Laboratory (ESRL) Chemical Sciences Division,, Boulder, CO, USA

Helen Worden, Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA

John Worden, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

Kazuyuki Miyazaki, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Zhen Qu, Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA

Daven Henze, Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA

Dylan Jones, Department of Physics, University of Toronto, Toronto, ON, Canada **Avelino Arellano**, Department of Hydrology and Atmospheric Sciences,

University of Arizona, Tucson, AZ, USA

Emily Fischer, Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA

Liye Zhu, Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA

Folkert Boersma, Wageningen University, Meteorological and Air Quality department, Wageningen, the Netherlands

Abstract:

Air pollution regulations in the United States (US) have resulted in substantial reductions in emissions and correspondingly improvements in air quality. However, large uncertainties remain in evaluating the partitioning of emissions, and how recent regulations have affected these emissions. Here we show a significant slowdown in decreasing US emissions of nitrogen oxides (NO_X) and carbon monoxide (CO) for 2011 to 2015, by combining recent inverse modelling analyses, satellite and surface in-situ measurements, and emission estimation using a bottom-up approach.