1.086 Physicochemical and bioreactive characterization of urban fine particulate matter during Asian dust storm .

Presenting Author:

Hsiao-Chi Chuang, School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan, chuanghc@tmu.edu.tw

Co-Authors:

Xinyi Niu, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, China

Yunfei Wu, CAS Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Chong-Shu Zhu, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China

Jun-Ji Cao, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China

Zhen-Xing Shen, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China

Ta-Chih Hsiao, Graduate Institute of Environmental Engineering, National Central University, Taoyuan, Taiwan

Kuan-Che Wu, School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan

Kin-Fai Ho, Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China

Abstract:

The objective of this study is to investigate the physicochemistry and bioreactivity of fine particles (PM_{2.5}) during the Asian dust storm period. The PM_{2.5} samples were collected in Xi'an and Beijing from 9th March to 7th April. PM_{2.5} were collected by mini-volume air samplers. Anions (Cl⁻, NO₃⁻ and SO₄²⁻), cations (NH₄⁺, K⁺, Mg²⁺ and Ca²⁺), organic carbon (OC) and elemental carbon (EC) were determined. Human aloveolar epithelial A549 cells were exposed to the PM $_{2.5}$ at 50 μ g/ml for determination of cell viability. The average PM_{2 5} concentration were 104.2 μ g·m⁻³ and 85.7 μ g·m⁻³ in Xi'an and Beijing, respectively. During the study period, Xi'an and Beijing were suffered with heavy pollution with PM2.5 concentration emitted from anthropogenic emissions as well as dust storm. It was found that OC contributed more to $PM_{2.5}$ in Beijing, and the OC/EC ratio of Beijing was higher than Xi'an. The concentrations and contributions of NO₃⁻, SO₄²⁻ and NH_4^+ in Xi'an were much higher than Beijing, which was mainly caused by the local emissions of fossil fuels combustion with photo-oxidation. It was also found that the contribution of NO_3^- was increased evidently in pollution days due to the combustion activities, while in dust storm period, NO_3^- and NH_4^+ contributions to PM_2^- showed evident decrease trend. We observed that the cell viability was positively correlated with Mg^{2+} , Ca^{2+} , OC and EC (p<0.05) in the Xi'an PM_{2.5} samples, whereas cell viability was

positively correlated with CI-, K+, Mg^{2+} , OC and EC (p<0.05) in the Beijing $PM_{2.5}$ samples. The difference in bioreactivity induced by the $PM_{2.5}$ could be resulted from the various emission sources during the dust storm period.